skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tibshirani, Ryan J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 1, 2026
  2. Free, publicly-accessible full text available November 1, 2025
  3. We take a random matrix theory approach to random sketching and show an asymptotic first-order equivalence of the regularized sketched pseudoinverse of a positive semidefinite matrix to a certain evaluation of the resolvent of the same matrix. We focus on real-valued regularization and extend previous results on an asymptotic equivalence of random matrices to the real setting, providing a precise characterization of the equivalence even under negative regularization, including a precise characterization of the smallest nonzero eigenvalue of the sketched matrix. We then further characterize the second-order equivalence of the sketched pseudoinverse. We also apply our results to the analysis of the sketch-and-project method and to sketched ridge regression. Last, we prove that these results generalize to asymptotically free sketching matrices, obtaining the resulting equivalence for orthogonal sketching matrices and comparing our results to several common sketches used in practice. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)
    Abstract We consider the problem of distribution-free predictive inference, with the goal of producing predictive coverage guarantees that hold conditionally rather than marginally. Existing methods such as conformal prediction offer marginal coverage guarantees, where predictive coverage holds on average over all possible test points, but this is not sufficient for many practical applications where we would like to know that our predictions are valid for a given individual, not merely on average over a population. On the other hand, exact conditional inference guarantees are known to be impossible without imposing assumptions on the underlying distribution. In this work, we aim to explore the space in between these two and examine what types of relaxations of the conditional coverage property would alleviate some of the practical concerns with marginal coverage guarantees while still being possible to achieve in a distribution-free setting. 
    more » « less
  6. Abstract Accurate forecasts can enable more effective public health responses during seasonal influenza epidemics. For the 2021–22 and 2022–23 influenza seasons, 26 forecasting teams provided national and jurisdiction-specific probabilistic predictions of weekly confirmed influenza hospital admissions for one-to-four weeks ahead. Forecast skill is evaluated using the Weighted Interval Score (WIS), relative WIS, and coverage. Six out of 23 models outperform the baseline model across forecast weeks and locations in 2021–22 and 12 out of 18 models in 2022–23. Averaging across all forecast targets, the FluSight ensemble is the 2ndmost accurate model measured by WIS in 2021–22 and the 5thmost accurate in the 2022–23 season. Forecast skill and 95% coverage for the FluSight ensemble and most component models degrade over longer forecast horizons. In this work we demonstrate that while the FluSight ensemble was a robust predictor, even ensembles face challenges during periods of rapid change. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025